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Abstract 

_____________________________________________________________________________________________________ 

The term “internal consistency” of a test has been used widely but defined 

controversially in the field of psychometrics. In theoretical and practical research, 

internal consistency has had different meanings, such as homogeneity, average 

interitem correlation, general factor saturation, and internal consistency reliability. 

Lack of an explicit definition of internal consistency has posed difficulties in 

concept use and interpretation of results as well as hampered the development of 

new and better indices for measuring it. Building on the review of various 

meanings and measures of internal consistency, the present study attempts to 

provide an explicit definition of internal consistency, together with 

recommendations of appropriate measures for assessing it. 
_____________________________________________________________________________________________________ 
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1. Introduction 

 

The term “internal consistency” has been widely used but controversially 

defined. Cronbach (1951) used the terms “internal consistency” and “homogeneity” 

interchangeably stating that “an internally consistent or homogeneous test should be 

independent of test length” (p. 323). However, Revelle (1979) defined internal 

consistency as the extent to which all of the items of a test measure the same 

construct, that is, the general factor saturation.  
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Yet other researchers (Green, Lissitz, & Mulaik, 1977; McDonald, 1981; 

Miller, 1995; Schmitt, 1996) used the term “internal consistency” to refer to the 

interrelatedness of items, and distinguished internal consistency from homogeneity 

by claiming that homogeneity refers to the unidimensionality of a set of test items. 

Another wide-spread use of internal consistency is related to the reliability estimate 

of a test based on a single administration, which is traditionally called internal 

consistency reliability (Haertel, 2006). In this sense, internal consistency has been 

often used to denote a group of methods that are intended to estimate reliability of a 

single-administrated test (Hattie, 1995).  

 

As illustrated above, the term “internal consistency” is associated with 

different meanings. Just as Sijtsma (2009) concluded, “Internal consistency has not 

been defined that explicitly, far from it” (p. 114) and for a long time, this has posed 

difficulties in its use and interpretation of results. Further, the confusion in the 

concept of internal consistency may have also caused problems in understanding, 

measuring, and applying other related psychometric test properties such as internal 

consistency reliability, as well as hampered the development of new and better 

indices for measuring internal consistency. Therefore, an explicit and complete 

definition of  the term “internal consistency” is highly needed. To better understand 

and define this term, various definitions or interpretations of  the term “internal 

consistency” are reviewed and discussed in the following sections, together with the 

measures for assessing it. Following the review, an explicit definition of  internal 

consistency is proposed. Numeric examples are also provided for the purpose of  

comparing the performances of  different measures or indices of  internal consistency 

and making recommendations on their use.  

 

2. What Is Internal Consistency? 

 

2.1. Internal Consistency = Average Interitem Correlation? 

 

Conceptually, the internal consistency of  a test indicates whether items on a 

test (or a subscale of  a composite test), that are intended to measure the same 

construct, produce consistent scores. If, for example, ten items are designed to 

measure the same construct, an individual should answer these items in the same way, 

which would suggest that the test has internal consistency.  

 



Tang, Cui & Babenko                                                    207 
 

 

Thus, some researchers (Cortina, 1993; Cronbach, 1951) defined internal 

consistency as a measure based on the degree of  bivariate correlations between 

different items on the same test (or the same subscale of  a composite test). Since the 

correlations between items, most often than not, vary in size, using the average 

interitem correlation is a simple and direct approach to capture the degree of  

correlation between different items on a test. To the authors’ knowledge, Cronbach 

(1951) is the first who proposed to use the average interitem correlation to measure 

internal consistency and developed a corresponding index: Cronbach’s r̅ij . 

Cronbach’s r̅ij was derived by applying the Spearman-Brown formula (Brown, 1910; 

Spearman, 1910) to coefficient alpha, thereby estimating the mean of  the 

correlations between items. Since then, internal consistency has been interpreted by 

some researchers and practitioners (e.g., Briggs & Cheek, 1986; Nunnally, 1978) as 

the average interitem correlation and assessed using Cronbach’s r̅𝑖𝑗 .  

 

However, we should be aware that the concept of  “consistent scores” does 

not necessarily mean the scores are identical or similar across items. For example, on 

a psychological test with two items, if  all respondents agreed with the statement “I 

like to study with a partner” and disagreed with the statement “I hate to study with a 

partner”, this would indicate the perfect internal consistency of  the test. Although 

the two items are negatively correlated, the degree of  the correlation is as high as 1. 

Suppose there are more items similar to the above two items added into the test, the 

average interitem correlations could be close to zero because positive interitem 

correlations can cancel out negative ones. To overcome this problem, practitioners 

either change the polarity of  negative items into positive through recoding the 

observed scores or use the mean of  absolute values of  the correlations between 

items as a measure of  internal consistency.  

 

One disadvantage of  the average interitem correlation is that this measure is 

influenced by the presence of  extreme correlation values. In addition, it does not 

reflect the variability among the interitem correlations. Therefore, the use of  the 

average interitem correlation is problematic when the correlations between items 

follow a skewed distribution, in particular when some extreme correlation values are 

observed. Revelle and Zinbarg (2009) also noted:  
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The problem with interrelatedness is that it does not differentiate between the 

case in which each item is related to only a small proportion of  the other 

items in the test from the case in which each item is related to every or nearly 

every other item in the test. (p. 152) 

 

2.2. Internal Consistency = General Factor Saturation (GFS) or Closeness to  

Unidimensionality? 

 

Revelle (1979) and Sijtsma (2009) offered another definition of  internal 

consistency, which was an extent to which all of  the items on a test measure the same 

construct, and coined it as the general factor saturation (Revelle, 1979). The 

advantage of  this perspective over the notion of  the average interitem correlation is 

that the general factor saturation is not affected by the skewness of  the distribution 

of  item correlations or extreme values of  interitem correlations. Further, using the 

average interitem correlation to measure internal consistency is not appropriate for a 

multidimensional test that contains distinct subtests or subscales. Whereas the ideal 

measurement is for all items on a test to measure one latent trait or factor, this is 

hard to achieve in practice. For example, International English Language Testing 

System (IELTS, British Council, 1980) has four subscales which measure four 

distinctive skills: listening, reading, writing, and speaking. Although the test is 

designed to measure proficiency in English as a second language (higher order factor), 

each subscale measures a distinct trait or skill (lower level factor). This is not 

uncommon in psychological or educational testing, and hence the assumption of  

unidimensionality of  a test is often violated. If  subscales happen to be highly 

correlated, this suggests that the subscales, although originally intended to measure 

different traits, in fact, measure one trait. In this case, the test is factorially 

homogeneous (Revelle, 1979), with high correlations among the subscales indicating 

the presence of  a higher order factor or only one general factor. Internal consistency 

is, thus, interpreted as the general factor saturation, which relates to homogeneity and 

explains why some researchers (Cronbach, 1951; Lord & Novick, 1968; Revelle, 1979) 

have used homogeneity and internal consistency interchangeably.  
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With respect to the measures of  internal consistency when it is defined as 

general factor saturation, different approaches have been recommended. Revelle 

(1979) recommended using beta, which was defined as the lowest split-half  reliability 

estimate, and pointed out that alpha tended to overestimate the general factor 

saturation while beta could give a more appropriate estimate of  the general factor 

saturation in the case of  in the case of  “a lumpy test” (i.e., a test with several large 

group factors). To find the lowest split-half  reliability estimate requires splitting the 

test in half  in all possible ways, which is impractical when the test is, for example, 

made of  20 items. Because analytic methods will not work in that case, a heuristic 

procedure is needed to estimate beta. Several heuristic methods and software 

programs have been developed to address the estimation problem. For example, 

ICLUST (Revelle, 1977, 1979), a program for hierarchical cluster analysis, allows 

estimating beta. Recently, some researchers (Revelle & Zinbarg, 2009, Yang & Green, 

2009, Zinbarg, Revelle, Yovel, & Li, 2005) recommended using ωh (hierarchical 

coefficient omega, McDonald, 1999) as a measure of  internal consistency. The ωh 

indicates the extent to which all the items on a test measure the general factor and is 

defined as the ratio of  the general factor variance to the total variance of  the test (see 

Zinbarg et al., 2005 for the estimation of  ωh).  

 

However, Sijtsma (2009) suggested that the internal consistency of  a test 

should be assessed by determining the degree of  closeness of  the 

covariance/correlation matrix to unidimensionality, which was estimated using 

MRFA (minimum rank factor analysis, Ten Berge & Kiers, 1991). In MRFA, the 

closeness to unidimensionality is assessed using the ratio of  the first eigenvalue to the 

sum of  all the eigenvalues of  the estimated true score covariance matrix (Ten Berge 

& Sočan, 2004). Expressed in percentages, Sijtsma (2009) referred to this ratio as the 

explained common variance (ECV). Nevertheless, Sijtsma (2009, p. 114) also noted 

that an internally consistent test is “psychologically interpretable” although this does 

not mean “that all items be factorially similar” (see Cronbach, 1951, p. 320). 

 

2.3. Internal Consistency = Internal Consistency Reliability?  

 

Internal consistency has also been used as a synonym of  internal consistency 

reliability and thus some indices for measuring internal consistency reliability, in 

particular coefficient alpha (Cronbach, 1951), have been widely used.  
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However, some researchers (Cortina, 1993; Green et al., 1977; Nunnally, 1978) 

have pointed out the inappropriateness of  using internal consistency reliability 

coefficients to measure internal consistency, stating that internal consistency is not an 

estimate of  reliability. For example, Nunnally (1978) wrote:  

 

Estimates of  reliability based on the average correlation among items within a 

test are said to concern the “internal consistency”. This is partly a misnomer, 

because the size of  the reliability coefficient is based on both the average 

correlation among items (the internal consistency) and the number of  items. 

Coefficient alpha is the basic formula for determining the reliability based on 

internal consistency. (p. 229-230) 

 

To better understand and distinguish between internal consistency and 

internal consistency reliability, we need to review the definition of  reliability first. In 

the classical test theory, the term reliability was initially defined by Spearman (1904) 

as the ratio of  true score variance to observed score variance. The estimation of  

reliability requires data from repeated testing, but such data are rarely available in 

practice. Thus, reliability is usually estimated based on scores from a single test 

administration, and is referred to as internal consistency reliability (Cronbach, 1951). 

Specifically, internal consistency reliability refers to the consistency of  behavior 

within a very limited time interval, i.e., the time interval during which the items in the 

test are being responded to (Horst, 1953). From this point of  view, the concept of  

internal consistency reliability seems to be similar to that of  internal consistency. 

However, a test that is not internally consistent could be reliable. In other words, a 

high value of  reliability does not guarantee a high level of  internal consistency.  

 

In contrast to reliability, internal consistency of  a test is independent of  its 

length (Cronbach, 1951). For example, a test may have unchanging internal 

consistency but increasing internal consistency reliability as the test length gradually 

increases from 10 items to, for instance, 20 items. Therefore, internal consistency 

reliability coefficients should not be used as indices of  internal consistency because 

reliability estimates are functions of  test length, that is, reliability increases as a test 

becomes longer. If  test developers need to increase the reliability of  a test they may 

just increase the number of  items but this does not necessarily change the internal 

consistency of  the test. In short, internal consistency is neither reliability nor internal 

consistency reliability.  
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2.4. An Explicit Definition of  Internal Consistency 

 

Based on the above review, internal consistency can, thus, be defined as a 

psychometric property of  a test that is (a) associated with the degree of  interitem 

correlations and the general factor saturation, and (b) independent of  test length. It 

can be seen that internal consistency has a stronger connection with validity than 

reliability when the formulas of  construct validity and reliability are compared (Judd, 

Smith, & Kidder, 1991; Streiner, 2003):  

 

Reliability=
σ𝐶𝐼

2 +σ𝑆𝐸
2

σ𝑇
2                                          (1) 

 

and 

 

Validity=
σ𝐶𝐼

2

σ𝑇
2 ,                                        (2) 

 

where σ𝐶𝐼
2  is the variance of  the construct of  interest (i.e., the variance accounted 

by general factor), σ𝑆𝐸
2  the systematic error variance, and 𝜎𝑇

2 the total test variance. 

Therefore, if  internal consistency is defined as the general factor saturation, 

measuring internal consistency is no different from measuring construct validity. 

However, as discussed earlier, internal consistency is a more complex concept and 

contains more information about the internal structure of  a test than the general 

factor saturation.  

 

The review of  existing definitions of  the term internal consistency has 

revealed that different researchers have attached different meanings to internal 

consistency and subsequently proposed a variety of  indices for measuring internal 

consistency, including Cronbach’s r̅𝑖𝑗  (Cronbach, 1951), Revelle’s beta (Revelle, 

1979), McDonald’s ωh (Zinbarg, Revelle, Yovel, & Li, 2005; Revell & Zinbarg, 

2009), and Sijtsma’s ECV (Sijtsma, 2009). When assessing the performance of  these 

indices against the widely used coefficient alpha (Cronbach, 1951), the researchers 

demonstrated that these indices performed better than coefficient alpha.  
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However, none of  the studies compared these indices simultaneously, and 

thus no explicit guideline has been developed yet. Therefore, the objective of  the 

present study is to fill in this research gap by comparing these recommended indices 

for assessing internal consistency.  

 

3. Method 

 

To determine which of  the recommended indices are appropriate measures 

of  internal consistency, these indices were compared using hypothetical examples. 

The main advantage of  using hypothetical data is that the internal structure of  a test 

is known. Moreover, tests with various internal structures can be analyzed and 

compared simultaneously, allowing for the detection of  the patterns or trends in the 

performance of  the indices and the factors that may affect their performance.  

 

In the present study, the simulation conditions were manipulated to resemble 

the structure of  real psychological tests. Although psychological measures vary in 

terms of  content such as intelligence tests, personality scales, and interest inventories, 

they have several common structural features that can be used in data simulation. 

First, psychological tests often measure several latent traits or attributes rather than a 

single trait as it is assumed in the classical test theory. For example, questions on the 

PDS (Personal Data Sheet, Woodworth, 1920) intend to measure excessive anxiety, 

depression, abnormal fears, and impulse problems among others. Second, the traits 

to be measured by a psychological test tend to be interrelated because they are 

components of  a more general construct.  

 

Considering these common structural features of  psychological tests, the 

bifactor model (Chen, West, & Sousa, 2006; Holzinger & Swineford, 1937; 

Rindskopf  & Rose, 1988) was used in the present study for simulating data that were 

structurally representative of  existing psychological tests. The bifactor model 

includes the general factor and group factors and is given by: 

 

 𝑋𝑖 = λi𝐹 + ∑ αik𝐺𝑘
𝑘
𝑘=1 + 𝐸𝑖 ,                                 (3) 

 

where  𝑋𝑖 is the observed score for the ith item, λi the factor loading of  the general 

factor 𝐹 on the ith item, αik the factor loading of  the Kth group factor 𝐺𝑘 on the ith 

item, and 𝐸𝑖 the residual or randomness component of  the ith item.  
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The general method was to generate simulated population covariance 

matrices for observed component scores. 

 

For the comparison purpose, the unifactor or unidimensional model was also 

included in the analyses, with αik  set to zero. In total, five different internal 

structures were generated: (a) unifactor data with equal general factor loadings λi 

for all items, (b) unifactor data with unequal general factor loadings λi  and 

odd-numbered items having larger loadings than even-numbered items, (c) bifactor 

data with larger general factor loadings λi  than group factor loadings αik , (d) 

bifactor data with equal general factor loadings λi and group factor loadings αik, 

and (e) bifactor data with smaller general factor loadings λi than group factor 

loadings αik. In order to generate a simple bifactor structure, only two group factors 

(i.e., two subscales) with equal loadings αik were considered for the three bifactor 

internal structures. The specific values for factor loadings are shown in Tables 1 and 

2 in the results section. 

 

Next, each of  the five structures was crossed with three levels of  test length 

(10, 20, and 40 items) to examine the effect of  test length on the performance of  

internal consistency indices. Finally, two levels of  the average interitem correlation 

(low and medium, respectively) were considered for the unifactor and the two 

subscales of  bifactor data sets. In total, thirty conditions were generated in the R 

environment (R Core Team, 2012) to compare and contrast the performance of  

internal consistency indices, including coefficient alpha, Cronbach’s r̅𝑖𝑗 , Revelle’s 

beta, McDonald’s ωh , and Sijtsma’s ECV. The standard deviation (SD) of  the 

correlations between items was also examined under each condition. 

 

4. Results 

 

4.1. Unifactor Data with Equal Loadings  

 

As shown in the upper panel of  Table 1, Cronbach’s r̅𝑖𝑗 (C’s r̅ij), which by 

definition is the mean of  interitem correlations, was equal to the square of  the 

general factor loadings (λi) for the items for unifactor data with equal loadings. Their 

values were 0.30 and 0.60, respectively, regardless of  the test length. Next, alpha, beta, 

and ωh were equal at each level of  test length.  
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These indices were positively affected by the increases in test length and 

general factor loadings. Specifically, as the test got longer (i.e., more items) and the 

size of  general factor loadings was increased from λi = √0.30 to λi = √0.60, 

alpha, beta, and ωh tended to increase. The ECV was equal to 1.0, indicating the 

perfect unidimensionality of  the test. As expected, the SD of  the correlations 

between items was zero, given the condition of  equal item factor loadings. 

 
Table 1: Indices for Measuring Internal Consistency for Unifactor Data 

 

 Test Length 

 10 20 40 10 20 40 

Equal Loadings λi = √0.30   λi = √0.60  

C’s r̅ij 

alpha 

beta 

0.30 

0.81 

0.81 

0.30 

0.90 

0.90 

0.30 

0.95 

0.95 

0.60 

0.94 

0.94 

0.60 

0.97 

0.97 

0.60 

0.98 

0.98 

ωh 0.81 0.90 0.95 0.94 0.97 0.98 

ECV 

SD 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

Unequal Loadings λi = √0.62 and  λj = √0.10 λi = √0.92 and λj = √0.35 

C’s r̅ij 

alpha 

beta 

0.30 

0.81 

0.68 

0.30 

0.90 

0.74 

0.30 

0.95 

0.78 

0.60 

0.94 

0.89 

0.60 

0.97 

0.92 

0.60 

0.98 

0.93 

ωh 0.83 0.90 0.95 0.94 0.97 0.99 

ECV  

SD 

1.00 

0.18 

1.00 

0.19 

1.00 

0.19 

1.00 

0.19 

1.00 

0.20 

1.00 

0.20 

Note. For equal loadings, λi is the loadings of  the ith item (i=1, 2, 3 ... n). For unequal loadings, 

λi and λj are the loadings of  the ith item (i=1, 3 ... n-1) and the jth item (j=2, 4 ... n), 

respectively. C’s r̅ij is Cronbach’s r̅ij; ωh is hierarchical coefficient omega; ECV is explained 

common variance; SD is the standard deviation of  the correlations between items. 
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4.2. Unifactor Data with Unequal Loadings  

 

As shown in the lower panel of  Table 1, Cronbach’s r̅𝑖𝑗, or the average 

interitem correlations, were again 0.30 and 0.60, respectively, regardless of  the test 

length and the differences in interitem correlations as caused by unequal factor 

loadings. In contrast to the results for the unifactor data with equal loadings, alpha, 

beta and ωh performed quite differently under the condition of  unequal loadings. 

Among the three indices, beta had the lowest values while ωh had the highest values 

at each level of  the test length, with the difference being the largest at the lower level 

of  the average interitem correlation (i.e., 0.30). Alpha became closer to beta as the 

average interitem correlation increased from 0.30 to 0.60 and the test length 

increased from 10 to 20 and then to 40 items. Overall, beta became considerably 

lower, alpha remained unchanged, and ωh increased trivially under the condition of  

unequal loadings, when compared with the condition of  equal loadings. The ECV 

was still equal to 1.0, indicating the perfect unidimensionality of  these data. As 

expected, under the condition of  unequal loadings, the SD was not equal to zero as it 

was under the condition of  equal loadings. Still, the test length had little effect on the 

change in the SD. For example, as the item number grew up from 10 to 20, the SD 

only increased by 0.01. 

 

4.3. Bifactor Data with High GFS 

 

For the bifactor data with high GFS, that is, the data with the higher general 

factor loadings than the group factor loadings, Cronbach’s r̅𝑖𝑗 became slightly lower 

(0.27 and 0.54, respectively; Table 2, upper panel), when compared with the 

corresponding values under the condition of  unifactor model, although each of  the 

two subscales of  the bifactor data had the average interitem correlations of  0.30 and 

0.60 as initially specified. Accordingly, alpha also became smaller since alpha was 

mainly affected by the average interitem correlation and test length. Beta and ωh 

were equal, although lower than alpha across all the conditions of  the bifactor data 

with high GFS. The discrepancies between them and alpha became slightly larger as 

test length increased from 10 to 40 items, with a small effect of  the average interitem 

correlation. The ECV was 0.92 (close to 1), which indicated the bifactor data with 

high GFS was rather close to being unidimensional. The SD was not zero, but 

negligibly small and independent of  test length. It increased as the average interitem 

correlations became larger. 
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Table 2: Indices for Measuring Internal Consistency for Bifactor Data 

 

 

Test Length 

 10 20 40 10 20 40 

High GFS λi = √0.25;  αik = √0.05 λi = √0.50;  αik = √0.10 

C’s r̅ij 

alpha 

beta 

ωh 

ECV 

SD 

0.27 

0.79 

0.72 

0.72 

0.92 

0.02 

0.27 

0.88 

0.81 

0.81 

0.92 

0.02 

0.27 

0.94 

0.85 

0.85 

0.92 

0.02 

0.54 

0.92 

0.85 

0.85 

0.92 

0.05 

0.55 

0.96 

0.88 

0.88 

0.92 

0.05 

0.55 

0.98 

0.89 

0.89 

0.92 

0.05 

Medium GFS λi = √0.15;  αj1 = √0.15  λi = √0.30;  αik = √0.30 

C’s r̅ij 

alpha 

beta 

ωh 

ECV 

SD 

0.22 

0.73 

0.51 

0.51 

0.75 

0.07 

0.22 

0.85 

0.58 

0.58 

0.75 

0.07 

0.22 

0.92 

0.62 

0.62 

0.75 

0.07 

0.43 

0.88 

0.61 

0.61 

0.75 

0.15 

0.44 

0.94 

0.64 

0.64 

0.75 

0.15 

0.45 

0.97 

0.65 

0.65 

0.75 

0.15 

Low GFS λi = √0.05;  αik = √0.25  λi = √0.10;  αik = √0.50 

C’s r̅ij 

alpha 

beta 

ωh 

ECV 

SD 

0.16 

0.66 

0.20 

0.20 

0.58 

0.12 

0.17 

0.80 

0.24 

0.24 

0.58 

0.12 

0.17 

0.89 

0.26 

0.26 

0.58 

0.12 

0.32 

0.83 

0.26 

0.26 

0.58 

0.25 

0.34 

0.91 

0.27 

0.27 

0.58 

0.25 

0.34 

0.95 

0.28 

0.28 

0.58 

0.25 

Note. λi is the general factor loadings of  the ith item (i=1, 2, 3 ... n). αik is the group factor 

loadings of  the ith item (i=1, 3,... n-1) when k is equal to 1 and the group factor loadings of  

the ith item (i=2, 4,... n) when k is equal to 2. GFS represents the general factor saturation. 

C’s r̅ij is Cronbach’s r̅ij; ωh is hierarchical coefficient omega; ECV is explained common 

variance; SD is the standard deviation of  the correlations between items. 
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4.4. Bifactor Data with Medium GFS 

 

For the bifactor data with medium GFS, the general factor and group factor 

loadings were assigned with equal values. The loadings were √0.15 and √0.30, 

corresponding to the two levels (low and medium) of  the average interitem 

correlations. Still, each of  the two subscales of  the bifactor data had the average 

interitem correlations of  0.30 and 0.60. Compared with the bifactor data with high 

GFS, Cronbach’s r̅𝑖𝑗 decreased to 0.22 and around 0.44, respectively (see Table 2, 

middle panel). Alpha also decreased accordingly. Beta and ωh were equal, and 

became much lower than alpha across all the conditions of  the bifactor data with 

medium GFS. The discrepancies between them and alpha became even larger as test 

length increased from 10 to 40 items and/or the average interitem correlation rose 

from low to medium. The absolute values of  their discrepancies were larger than 

those under the condition of  the bifactor data with high GFS. The ECV was 0.75, 

which indicated the bifactor data with medium GFS was a little away from being 

unidimensional. The SD increased slightly as the GFS changed from high to medium, 

and further increased as the average interitem correlation became larger. 

 

4.5. Bifactor Data with Low GFS 

 

To generate the bifactor data with low GFS, the general factor and group 

factor loadings in the bifactor data with high GFS were switched. Cronbach’s r̅𝑖𝑗 

decreased even further to around 0.17 and 0.34, respectively (see Table 2, bottom 

panel). Alpha also continued to decrease. However, the decrease was trivial when the 

test length was large or when the average interitem correlation was at the medium 

level. Beta and ωh values were equal but decreased remarkably. As shown in Table 2 

(bottom panel), when the general factor loadings were √0.05, beta and ωh values 

decreased by more than 70% of  the values under the condition with high GFS and 

became much lower than alpha across all the conditions of  the bifactor data with low 

GFS. Furthermore, beta and ωh increased much less than alpha as the test length 

increased from 10 to 40 items and/or the level of  the average interitem correlation 

increased from low to medium. The ECV was 0.58, which indicated the 

dimensionality of  the bifactor data with low GFS was farther away from being 

unidimensional. The SD continued to increase as the GFS changed from medium to 

low, and the increase was boosted as the average interitem correlation grew up.  
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5. Discussion 

 

For several decades, the term “internal consistency” of  a test has been 

associated with different meanings, including homogeneity, interrelatedness, general 

factor saturation and internal consistency reliability. It poses difficulties in concept 

use and interpretation of  results as well as hampering the development of  new and 

better indices for measuring internal consistency. Based on the review of  existing 

definitions, internal consistency can, thus, be defined as a psychometric property of  a 

test that is (a) associated with the degree of  interitem correlations and the general 

factor saturation, and (b) independent of  test length.  

 

In order to determine and evaluate which indices are appropriate for 

measuring internal consistency, the following three criteria were considered. The first 

criterion is the ability to reflect the degree of  the general factor saturation of  a test. 

Out of  the six indices considered in the present study, only beta and ωh, were 

shown to be able to clearly indicate the change in the degree of  the general factor 

saturation in our numerical examples. The second criterion is the ability to reflect the 

degree of  interrelatedness, that is, the degree of  interitem correlations. Except for 

the ECV and SD, the considered indices were shown to be able to reflect the change 

in the degree of  interitem correlations. The third criterion is the independence of  

test length. Alpha, beta, and ωh were shown to depend on the test length 

manipulated in the present study (i.e., 10, 20, and 40 items). These indices tended to 

increase in value with an increase in the test length. Out of  these three indices, alpha 

was found to be the most influenced by the test length. Although Cronbach’s r̅𝑖𝑗, SD, 

and ECV were determined to be independent of  the test length, these indices, if  

used alone, do not depict the whole picture of  test internal consistency.  

 

The results of  the comparison of  the six indices that are currently in use in 

the field of  measurement and testing indicate that using a single measure to assess 

internal consistency is not sufficient, and thus, a combination of  measures is 

recommended. In order to assess internal consistency, it is recommended to use 

ECV first to assess whether or not a test is unidimensional or close to 

unidimensionality, because the performances of  other indices are affected by the 

closeness to unidimensionality. Although ECV performs well as a measure of  the 

closeness to unidimensionality, it fails to reveal the change in interitem correlations.  
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Given this, it is recommended that when the ECV value is high (e.g., greater 

than 0.75 in this study), both the average degree of  the correlations between items 

(Cronbach’s r̅𝑖𝑗) and the SD of  these correlations should be reported. These two 

indices function well in revealing the change in interitem correlations under the 

condition of  data being close to unidimensionality. If  ECV is medium or low (e.g., 

0.75 or below in this study), beta and ωh are recommended because these indices 

reflect the degree of  the general factor saturation and overcome the shortcoming of  

average interitem correlation under the condition of  data being heterogeneous or 

multidimensional.  

 

In conclusion, the existence of  multiple and controversial definitions of  

internal consistency, along with various indices to measure it, has presented 

difficulties in concept use and interpretation of  results. The fact that none of  the 

examined six indices is able to provide a complete picture of  internal consistency 

when used alone, calls for the development of  a new and better measure of  internal 

consistency. Future research should address this long-standing need in the field of  

measurement and assessment. 
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